Scientific revolution
Modern work on gravitational theory began with the work of Galileo Galilei in the late 16th and early 17th centuries. In his famous (though possibly apocryphal)[2] experiment dropping balls from the Tower of Pisa, and later with careful measurements of balls rolling down inclines, Galileo showed that gravitation accelerates all objects at the same rate. This was a major departure from Aristotle's belief that heavier objects are accelerated faster.[3] Galileo correctly postulated air resistance as the reason that lighter objects may fall more slowly in an atmosphere. Galileo's work set the stage for the formulation of Newton's theory of gravity.
Newton's theory of gravitation
Main article: Newton's law of universal gravitation
In 1687, English mathematician Sir Isaac Newton published Principia, which hypothesizes the inverse-square law of universal gravitation. In his own words, “I deduced that the forces which keep the planets in their orbs must [be] reciprocally as the squares of their distances from the centers about which they revolve: and thereby compared the force requisite to keep the Moon in her Orb with the force of gravity at the surface of the Earth; and found them answer pretty nearly.”[4]
Newton's theory enjoyed its greatest success when it was used to predict the existence of Neptune based on motions of Uranus that could not be accounted by the actions of the other planets. Calculations by John Couch Adams and Urbain Le Verrier both predicted the general position of the planet, and Le Verrier's calculations are what led Johann Gottfried Galle to the discovery of Neptune.
Ironically, it was another discrepancy in a planet's orbit that helped to point out flaws in Newton's theory. By the end of the 19th century, it was known that the orbit of Mercury showed slight perturbations that could not be accounted for entirely under Newton's theory, but all searches for another perturbing body (such as a planet orbiting the Sun even closer than Mercury) had been fruitless. The issue was resolved in 1915 by Albert Einstein's new General Theory of Relativity, which accounted for the small discrepancy in Mercury's orbit.
Although Newton's theory has been superseded, most modern non-relativistic gravitational calculations are still made using Newton's theory because it is a much simpler theory to work with than General relativity, and gives sufficiently accurate results for most applications.
Gravitational torsion, weak equivalence principle and gravitational gradient
See also: Eötvös experiment
Loránd Eötvös published on surface tension between 1876 and 1886. The Torsion or Eötvös balance, designed by Hungarian Baron Loránd Eötvös, is a sensitive instrument for measuring the density of underlying rock strata. The device measures not only the direction of force of gravity, but the change in the force of gravity's extent in horizontal plane. It determines the distribution of masses in the Earth's crust. The Eötvös torsion balance, an important instrument of geodesy and geophysics throughout the whole world, studies the Earth's physical properties. It is used for mine exploration, and also in the search for minerals, such as oil, coal and ores.
Eötvös' law of capillarity (weak equivalence principle) served as a basis for Einstein's theory of relativity. (Capillarity: the property or exertion of capillary attraction of repulsion, a force that is the resultant of adhesion, cohesion, and surface tension in liquids which are in contact with solids, causing the liquid surface to rise - or be depressed...)[5][6]
The simplest way to test the weak equivalence principle is to drop two objects of different masses or compositions in a vacuum, and see if they hit the ground at the same time. These experiments demonstrate that all objects fall at the same rate with negligible friction (including air resistance). More sophisticated tests use a torsion balance of a type invented by Loránd Eötvös. Satellite experiments are planned for more accurate experiments in space.[7]
General relativity
Main article: Introduction to general relativity
[[{{{Name}}}]] |
|
Einstein field equations |
Introduction Mathematical formulation Resources undamental concepts | Special relativity Equivalence principle World line · Riemannian geometry | Phenomena | Kepler problem · Lenses · Waves Frame-dragging · Geodetic effect Event horizon · Singularity Black hole | Equations | Linearized Gravity Post-Newtonian formalism Einstein field equations Friedmann equations ADM formalism BSSN formalism | |
|
ng along locally straight paths in curved spacetime. These straight lines are called geodesics. Like Newton's First Law, Einstein's theory stated that if there is a force applied to an object, it would deviate from the geodesics in spacetime.[10] For example, we are no longer following the geodesics while standing because the mechanical resistance of the Earth exerts an upward force on us. Thus, we are non-inertial on the ground. This explains why moving along the geodesics in spacetime is considered inertial.
Einstein discovered the field equations of general relativity, which relate the presence of matter and the curvature of spacetime and are named after him. The Einstein field equations are a set of 10 simultaneous, non-linear, differential equations. The solutions of the field equations are the components of the metric tensor of spacetime. A metric tensor describes a geometry of spacetime. The geodesic paths for a spacetime are calculated from the metric tensor.
Notable solutions of the Einstein field equations include:
- The Schwarzschild solution, which describes spacetime surrounding a spherically symmetric non-rotating uncharged massive object. For compact enough objects, this solution generated a black hole with a central singularity. For radial distances from the center which are much greater than the Schwarzschild radius, the accelerations predicted by the Schwarzschild solution are practically identical to those predicted by Newton's theory of gravity.
- The Reissner-Nordström solution, in which the central object has an electrical charge. For charges with a geometrized length which are less than the geometrized length of the mass of the object, this solution produces black holes with two event horizons.
- The Kerr solution for rotating massive objects. This solution also produces black holes with multiple event horizons.
- The Kerr-Newman solution for charged, rotating massive objects. This solution also produces black holes with multiple event horizons.
- The cosmological Robertson-Walker solution, which predicts the expansion of the universe.
The tests of general relativity included:[11]
- General relativity accounts for the anomalous perihelion precession of Mercury.2
- The prediction that time runs slower at lower potentials has been confirmed by the Pound–Rebka experiment, the Hafele–Keating experiment, and the GPS.
- The prediction of the deflection of light was first confirmed by Arthur Stanley Eddington in 1919.[12][13] The Newtonian corpuscular theory also predicted a lesser deflection of light, but Eddington found that the results of the expedition confirmed the predictions of general relativity over those of the Newtonian theory. However this interpretation of the results was later disputed.[14] More recent tests using radio interferometric measurements of quasars passing behind the Sun have more accurately and consistently confirmed the deflection of light to the degree predicted by general relativity.[15] See also gravitational lens.
- The time delay of light passing close to a massive object was first identified by Irwin I. Shapiro in 1964 in interplanetary spacecraft signals.
- Gravitational radiation has been indirectly confirmed through studies of binary pulsars.
- Alexander Friedmann in 1922 found that Einstein equations have non-stationary solutions (even in the presence of the cosmological constant). In 1927 Georges Lemaître showed that static solutions of the Einstein equations, which are possible in the presence of the cosmological constant, are unstable, and therefore the static universe envisioned by Einstein could not exist. Later, in 1931, Einstein himself agreed with the results of Friedmann and Lemaître. Thus general relativity predicted that the Universe had to be non-static—it had to either expand or contract. The expansion of the universe discovered by Edwin Hubble in 1929 confirmed this prediction.[16]
Gravity and quantum mechanics
Main articles: Graviton and Quantum gravity
Several decades after the discovery of general relativity it was realized that general relativity is incompatible with quantum mechanics.[17] It is possible to describe gravity in the framework of quantum field theory like the other fundamental forces, such that the attractive force of gravity arises due to exchange of virtual gravitons, in the same way as the electromagnetic force arises from exchange of virtual photons.[18][19] This reproduces general relativity in the classical limit. However, this approach fails at short distances of the order of the Planck length,[20] where a more complete theory of quantum gravity (or a new approach to quantum mechanics) is required. Many believe the complete theory to be string theory,[21] or more currently M-theory, and, on the other hand, it may be a background independent theory such as loop quantum gravity or causal dynamical triangulation.